8 research outputs found

    Analyzing the Feasibility of an Unmanned Cargo Ship for Different Operational Phases

    Get PDF
    The maritime industry has begun to look into autonomous ships as an alternative to conventional ships due to growing pressure to reduce the environmental impact of maritime transportation, to increase safety, to mitigate the growing challenges in recruiting seafarers, and to increase profit margins. There is a lot of research on the challenges and feasibilities of an autonomous ship. However, there is less discussion on the transition from manned to unmanned ships and the tasks that are feasible to automate before the whole ship is unmanned. This paper investigates the technical and regulatory feasibility of automating different tasks for different operational phases for a large cargo ship. This study shows that a fully unmanned cargo ship is not feasible today, but that some tasks can be automated within the next five years.publishedVersio

    A gap analysis for automated cargo handling operations with geared vessels frequenting small sized ports

    Get PDF
    With the Yara Birkeland, the world’s first autonomous cargo ship developed for commercial use, nearing regular unmanned operation, it is crucial to assess the availability and readiness of unmanned cargo handling solutions. While there are already fully automated container terminals at large international ports, the purpose of this study is to consider solutions to support autonomous ships for small sized ports with little infrastructure, typical of coastal harbors in Norway. The analysis centers on geared cargo vessels that can navigate such ports with minimal or no crew onboard, and the primary method used involved workshops and interviews with personnel from relevant industries. An important finding is the lack of skilled crane operators that are willing to follow the ship. The study concludes that it is important to address the following 3 key technological gaps: (1) the autonomous connection and release of break-bulk, (2) automatic securing and lashing of onboard cargo, and (3) shipboard cranes that can operate without an onsite crane operator.publishedVersio

    Eurobot 2008

    Get PDF
    Eurobot Open er en internasjonal robotkonkurranse for studenter og uavhengige organisasjoner, som arrangeres i Europa i mai hvert år. Institutt for teknisk kybernetikk har deltatt hvert år siden 2000, gjennom prosjekt- og diplomoppgaver. I 2008 foregikk konkurransen i Heidelberg, Tyskland, under tittelen "Mission to Mars". Oppgaven gikk i korte trekk ut på å plukke opp og samle steinprøver, i form av innebandyballer, i et eget depot. Dette arbeidet har hatt til hensikt å fullføre roboten ved å utvikle og gjennomføre de systemene som trengs for å delta i konkurrasen. Gjennom prosjektoppgaven høsten 2007, har undertegnede utviklet en del basisfunksjonalitet på roboten, som det nå er bygget videre på. Posisjoneringen av roboten er grundig gjennomgått, og det har vært fokus på å utvikle et absolutt posisjoneringssystem basert på triangulering med 3 faste sendere. Systemet er basert på et ferdig konsept, men det har vært jobbet mye med hardware og ny software har blitt utviklet. Til slutt har det hele blitt testet, noe som har vist presise posisjoneringsresultater. Avlesning av vinklene til trianguleringen viste seg imidlertid å ta litt tid, slik at dette må gjøres når roboten står stille på bordet. Pga. tidsbruk og taktikk ble det kun brukt en sender under selve konkurransen. Navigasjonssystemet har stort sett blitt videreført fra tidligere, men det er lagt til mye ny funksjonalitet som gjør manøvreringen på spillebordet mer fleksibel. Det kan bla. nevnes rygging, hastighetsstyring og avstandsregulering mot kant. Endringene har fungert bra og vist seg svært nyttig i konkurransesammenheng. Den kunstige intelligensen har blitt basert på en rekke tilgjengelige strategier, der alle har den samme oppbygningen. Fokus har vært på en enkel og strukturert AI der robusthet og repeterbarhet har vært nøkkelordene. Rammeverket med en overordnet styring og fleksible strategier fungerte bra både under testing og konkurranse. Testing av AI ble i utgangspunktet gjort mot en simulator, noe som er mer effektivt enn å teste mot den fysiske roboten. Antikollisjonssystemet er basert på fjorårets system og en rekke endringer har blitt gjennomført. De viktigste endringene er å ikke benytte Ir til kollisjonsdeteksjon, i tillegg til å legge til antikollisjonslogikk i AI. Tiltak som deaktivering av antikollisjon i definerte soner, og utarbeidingen av en unnamanøvringsalgoritme har gjort systemet mer robust enn tidligere. Datasynet er videreutviklet med utgangspunkt i fjorårets kode og benytter Hough-transformen til å finne baller. Ballene er sirkler i et bilde. Kameraet klarte fint å gjenkjenne baller foran roboten, både når roboten stod stille og når den var i bevegelse. Kamerakoden la utgangspunktet for den ene AI-strategien som var å lete etter baller på bordet. Underveis har det vært gjort en del adminstrativt arbeide, som organisering av EiT, økonomi, reise til Tyskland etc. I tillegg ligger det mye arbeid bak å koble alle delmodulene sammen i roboten på en fornuftig måte. Arbeidet har tatt mye tid, men dette har vært helt nødvendig for å kunne framlegge et fungerende system til slutt. Omfattende testing og resultater fra konkurransen viser at totalsystemet på roboten er veldig robust. Kommunikasjonen mellom modulene har fungert bra og mange feil ble luket bort under testingen. Dessverre greide ikke roboten å hevde seg i konkurransen grunnet tilfeldige feil. Roboten vant 2 av 5 kamper, og tapte de resterende pga. en skrue som falt av dekselet, en startsnor som ikke trigget startinterruptet og "jamming" av baller i sorteringsmodulen. På tross av et dårlig resultat i konkurransen er undertegnede godt fornøyd med arbeidet som er gjort, og tror at fundamentet for neste år skal være bra. Feilene som oppstod var tilfeldige og vanskelige å gardere seg fullstendig mot

    SIMPACT - SIMulation based ship concept imPACT evaluation tool

    Get PDF
    This report contains the user manual for the SIMPACT tool (SIMulation based ship concept imPACT evaluation tool) for evaluation of novel ship concepts. The tool consists of two sub tools. The logistics analysis tool (LA tool), and the MASS analysis tool (MA tool) for cost and emission analysis. SIMPACT can be used to make an initial design of a waterborne transport system and to evaluate the logistical performance through a set of KPIs. Furthermore, SIMPACT can estimate energy consumption for ships operating in the transport system, transported cargo volumes, emissions, and costs.publishedVersio

    AEGIS D2.6: Roadmap for automated waterborne transport

    No full text
    This publication has been provided by members of the AEGIS consortium and is intended as input to the discussions on and development of new automated and autonomous waterborne transport systems. The content of the publication has been reviewed by the AEGIS participants but does not necessarily represent the views held or expressed by any individual member of the AEGIS consortium. While the information contained in the document is believed to be accurate, AEGIS participants make no warranty of any kind with regard to this material including, but not limited to the implied warranties of merchantability and fitness for a particular purpose. None of AEGIS participants, their officers, employees, or agents shall be responsible, liable in negligence, or otherwise howsoever in respect of any inaccuracy or omission herein. Without derogating from the generality of the foregoing neither of AEGIS participants, their officers, employees or agents shall be liable for any direct, indirect, or consequential loss or damage caused by or arising from any information advice or inaccuracy or omission herein. The material in this publication can be reproduced provided that a proper reference is made to the title of this publication and to the AEGIS project (http://aegis.autonomous-ship.org/).publishedVersio

    Development of an advanced, efficient and green inter-modal system with autonomous inland and short sea shipping - AEGIS

    Get PDF
    The European maritime transport policy recognizes the importance of the waterborne transport systems as key elements for sustainable growth in Europe. A major goal is to transfer more than 50% of road transport to rail or waterways within 2050. To meet this challenge waterway transport needs to get more attractive and overcome its disadvantages. Therefore, it is necessary to develop new knowledge and technology and find a completely new approach to short sea and inland waterways shipping. A key element in this is automation of ships, ports and administrative tasks aligned to requirements of different European regions. One main goal in the AEGIS project is to increase the efficiency of the waterways transport with the use of higher degrees of automation corresponding with new and smaller ship types to reduce costs and secure higher frequency by feeders and provide multimodal green logistics solutions combining short sea shipping with rail and road transport
    corecore